

Grenada Capacity Building Programme for Energy Management and Energy Audits

Webinar III: Save Energy, Save Money

Target audience: Training Institutions, Government Ministries and Statutory Organisations

Date: 20 – 21 April 2022

Time: 9:00 am to 12:00 pm Grenada Time

Content

Background
Objective, Methodology, Target audience
☐ Grenada's Energy Sector
Day-1: Concepts of Energy and How to Conduct Energy Audit
☐ Fundamentals of Energy, Efficiency and Conservation
☐ Importance of Energy Management
Step by step Approach in Conducting Energy audit
Energy Audit Tools and Its Importance
\square $Q&A$

Content

Day-2: Energy Efficiency Measures & Financial Planning	g
☐ Review of Energy Use	
☐ Activities to do During Site Assessment	
☐ Identification of Energy Conservation Measures	
☐ Energy Saving Calculations	
☐ Financial Viability of The Project	
Energy Audit Report Format	
□ Q&A	

Introduction

Background

Government of Grenada recognized that **reducing the energy consumption**, **managing and increasing the efficiency of energy usage** - is the quickest and cheapest way to have the highest returns on investment for energy transition.

Objective

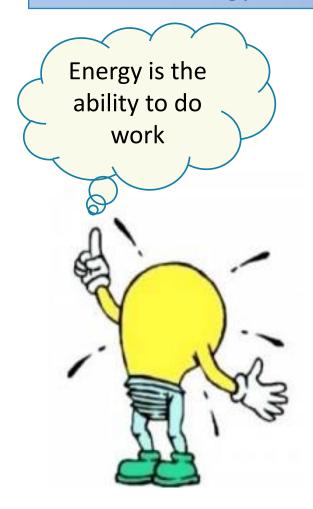
To strengthen various energy end users' capacity, to undertake energy audits and identify energy cost saving measures which can be implemented practically.

Methodology

Conduct a series of webinars and a face-to-face training program

- Developing training materials
- Webinars for various type of end users (First Webinar : Homeowners and Youth)
 (Second Webinar : Hotels and Financial Institutions)
- Training institutions, government ministries and statutory organisations

Partners: SIDS Lighthouses Initiative, IRENA
Ministry of Finance, Planning, Economic Development and Physical Development
Ministry with responsibility for Climate Resilience and the Environment
NDC Partnership

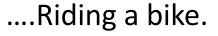

Day - 1

Session II

Introduction to Energy and Electricity Concepts

Introduction - Energy

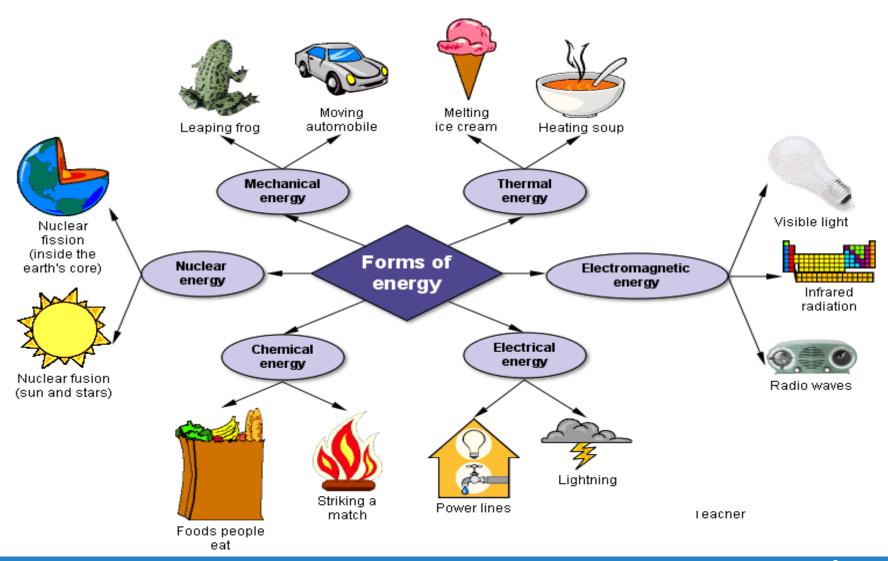
What is Energy...???



....Reading a book.

....Running around the school.

....Even resting needs energy.

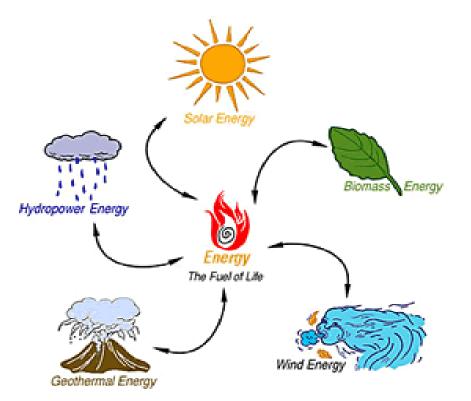

Definition of Energy

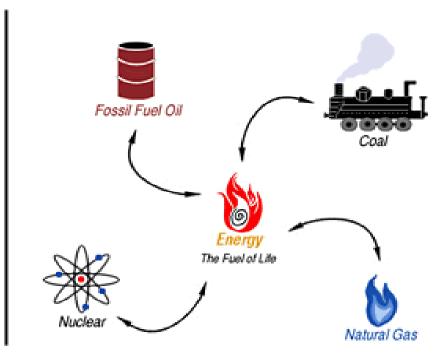
- *Energy* It is the ability/capacity to do work
- Work It is the transfer of energy. A force of moving a body over a distance is called work.
- **Power** It is rate at which energy is converted to work

- *Kilowatt (kW)* A unit of measure of the amount of power needed to operate equipment, equivalent to one thousand (1,000) watts
- Kilowatt-Hour (kWh) A measure of electrical energy equivalent to power consumption of 1000 watts for 1 hour. It is the most commonly used unit of measure indicating the amount of electricity consumed over time (what you get charged)

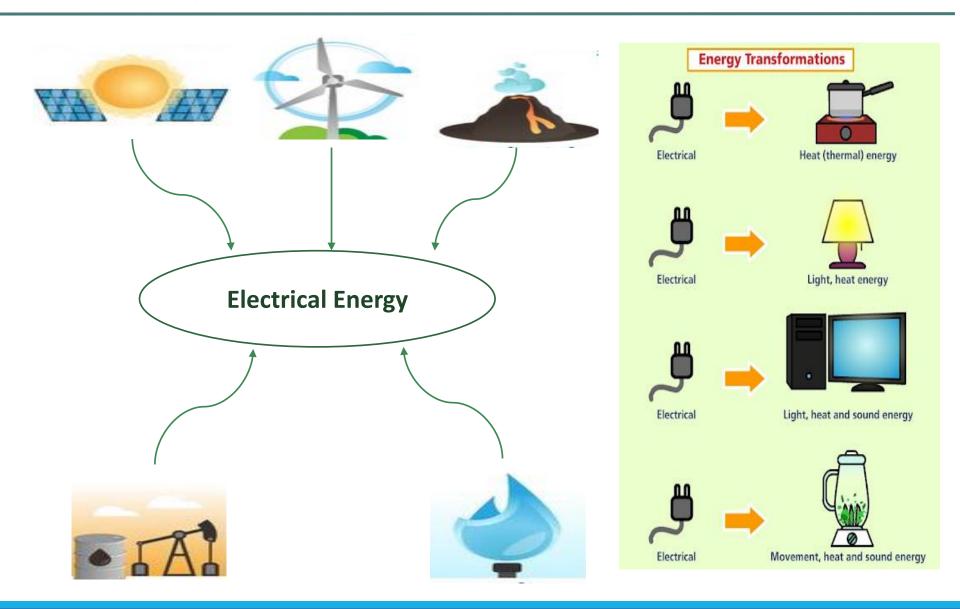
1 Watt = volt x ampere

Different forms of energy



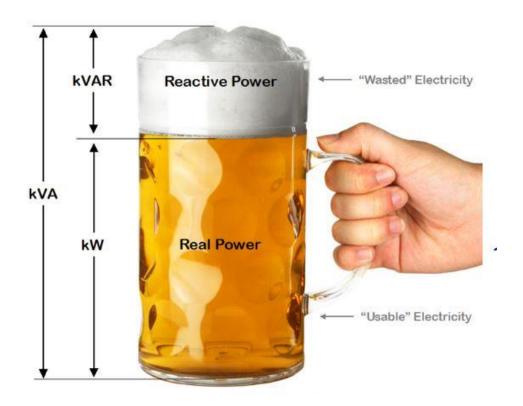

Sources of Energy

Sources of energy refer to - from WHERE energy comes from.


Renewable Energy Sources

Non-Renewable Energy Sources

Electrical Energy and Transformations



Component of Electric Energy

Active Power or True Power (kW)

Reactive Power (kVAR)

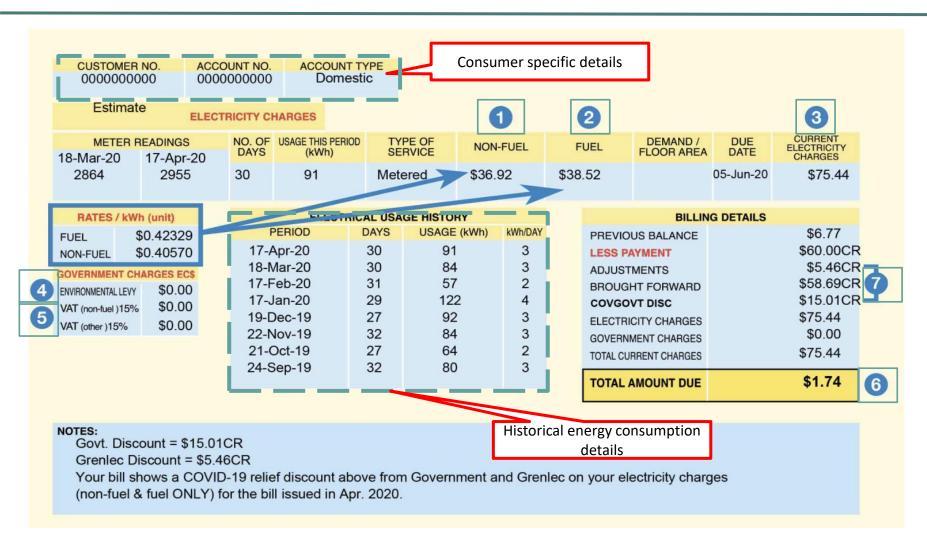
Apparent Power (KVA)

Electrical Energy: Metering

How To Decide Which Appliance Will Consume More Energy

- Depends on "INPUT POWER" or "Active Power" of the appliance.
- Generally written on "Product Information Tag" and measured in Watt (W) or Kilo Watt (kW)

1000 W = 1KW OR 1W = 1/1000 KW


$$\begin{array}{ccc} \text{INPUT POWER} & \text{X} & \text{TIME} \\ \text{(kW)} & \text{X} & \text{(Hr)} & = & \text{ELECTRIC ENERGY} \\ \end{array}$$

1 Unit of Electric Energy Consumed = 1 kWh
It is the amount of active power or true power consumed in one hour

Understanding your GRENLEC Bill

Understanding your Household Electricity Bill

Source: https://grenlec.com/customers/tools-to-help-you/yourbill/

Components of GRENLEC Electricity Bill

- **1. Non-Fuel Charge:** It is the average price involved in transmission and distribution of electricity. It also includes administration and maintenance of electricity poles, lines, generators, transformers, etc.
- **2. Fuel Charge:** It is the average price of the fuel used to generate electricity over the last 3 months and adjusted every month.
- 3. Current Electricity Charges: It is the sum of Fuel and Non-Fuel charges for the billing period.
- 4. Environmental Levy: It is collected on behalf of the Grenada Solid Waste Management Authority.
- Less than 99 units \$ 0.00
- Above 99 and up to 149 units \$ 5.00
- 150 units & above \$ 10.00
- 5. Value Added Tax: Applied to the non-fuel portion and other GRENLEC services.
- **6. Total amount due:** Amount to be paid after subtracting "adjustments, brought forward and government discount" with "Total current charges".

Total Electricity Bill= (Fuel charge + Non-Fuel Charge) x Number of units in kWh + Government Charges

Total amount due

- = Total current charges (Adjustments + Brought forward + Government discount)
- **7. Adjustments:** Any charges for other transactions processed on your account. **Brought Forward:** Credit or arrears from previous bills; credits are subtracted from and arrears are added to your current electricity charges. You must settle arrears urgently.

Case Studies: Electricity bill Calculation

Description	Quantity	Wattage	Operating hours/month	Month Energy consumption, kWh
	А	В	С	D = A * B * C/1000
Television	01	50	120	6.0
Fridge	01	120	250	
Washing machine	01	400	30	
1.0 Ton Air conditioner	01	800	50	
LED lights	03	15	240	
Outdoor lighting (MH type)	02	40	300	
Total monthly energy co	onsumption			

Energy Consumption Per Month (kWh/Month)

Operating Hour Per

X Month (Hrs.)

1000

Case Studies: Electricity bill Calculation

Description	Quantity	Wattage	Operating hours/month	Month Energy consumption, kWh
	А	В	С	D = A * B * C/1000
Television	01	50	120	6.0
Fridge	01	120	250	30.0
Washing machine	01	400	30	12.0
1.0 Ton Air conditioner	01	800	50	40.0
LED lights	03	15	240	10.8
Outdoor lighting (MH type)	02	40	300	24.0
Total monthly energy consumption 122.8				

Case Studies: Electricity bill calculation

Fuel charges $= 0.4459 \,\$$

Non Fuel charges = 0.4057 \$

VAT = 15% of non fuel charges for monthly consumption above 99 kWh

Environmental levy= 0 \$ for <99 kWh monthly consumption;

5 \$ for 99 kWh and <149 kWh monthly consumption;

10 \$ for 150 kWh and above monthly consumption

Total Electricity Bill = (Fuel charge + Non-Fuel Charge)x Number of units in kWh +

Environmental levy + VAT

Total Electricity bill with the existing equipment

 $= \{(122.8*0.4459)+(122.8*0.4057)\} + (122.8*0.4057*0.15) + 5 = 117$

Case Studies: Electricity bill saving option

Option: If Outdoor lamps are replace with integrated solar lamps with 20 W LED lamps and battery backup and photo sensor. Calculate what is the reduction in the electricity bill?

Monthly energy consumption for outdoor lighting = 0 kWh

Total monthly electricity consumption with Solar outdoor lamps = 122.8 – 24 = 98.8 kWh

Total Electricity bill after replacing all outdoor lighting with Solar outdoor lamps

$$= \{(98.8*0.4459) + (98.8*0.4057)\} + 0 + 0$$

= 84.1 \$

Reduction electricity bill = 28% with an investment of 1000 \$

Energy Efficiency v/s Energy Conservation

Energy efficiency is "using less energy to provide the same service" either through technology upgradation or through proper utilization of the appliances.

Energy conservation is any "behavior that results in the use of less energy" to do same work.

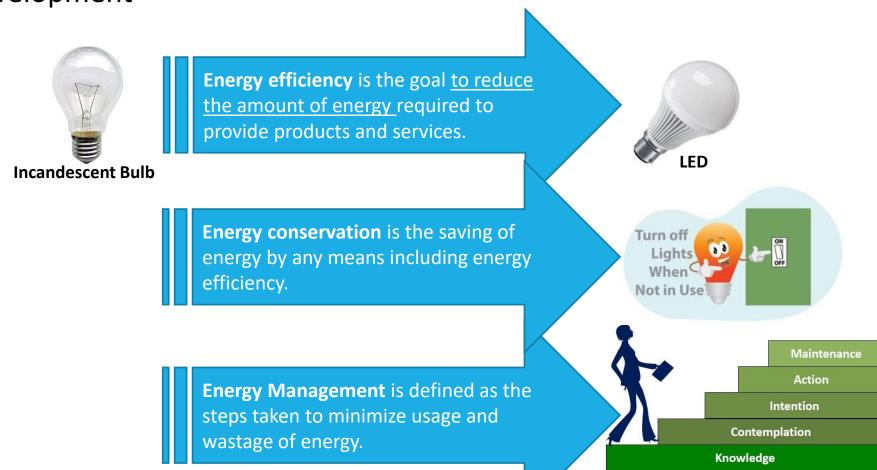
- Turning off a light is energy conservation, not energy efficiency
- Replacing conventional lamps with LED lamps, is energy efficiency
- Setting air conditioner thermostat temperature at 24°C, is energy conservation.
- Replacing non-inverter air conditioner with inverter air conditioner, is energy efficiency.

Energy Efficiency v/s Energy Conservation

Both energy efficiency and energy conservation refer to saving energy through its wise and rational use.

Energy Efficiency looks to employment of different technologies to use less energy while providing the same output or function, for example using front load washing machine instead of top load.

VS.



Energy Conservation refers to behavioral practices, which results in using less energy, such as drying cloths outside in SUN.

Energy Efficiency	Energy Conservation		
Energy Efficiency is using technology that	Energy conservation is using less energy by		
requires less energy to perform the same	changing our behavior or habits (in addition		
function (or) service	to using energy more efficiently)		
-Technology improvement /			
advancement			
Examples	Examples		
Use of high-efficiency lighting bulbs (LED)	Use of Staircase		
Use of high-efficiency ceiling fans (BLDC)	Use of bicycle		
Use of inverter-based air conditioner	Use correct size burner based on a cooking		
	vessel		
Use of induction technology – cook stove	Citizens interested in saving energy make		
	use of solar or renewable energy		
	sources (like solar battery back-up for		
	mobile charging /recharging battery/ torch		
	light etc.)		

Energy is particularly important to a country's economic growth and development

Awareness

Scenario: Commuting to 2rd Floor in a building in public place

Energy Conservation

Taking the stairs

Efficient Use of Energy

More than 3 people using the lift at the same time

Energy Intensive Process

Single person using the lift

Scenario: Travelling to nearest supermarket

Energy Conservation

Using a bicycle for shopping

Efficient Use of Energy

Hatchback car for moderate shopping

Energy Intensive Process

Pick-up SUV car with minimal shopping


Benefits of Energy Conservation

Homes/Buildings/Industry

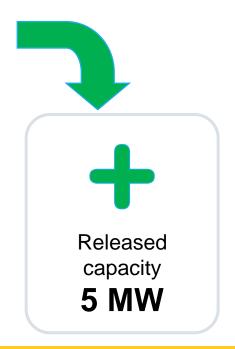
- Reduced Energy Bills
- Increased comfort levels
- Increased productivity
- Reduced maintenance cost
- Increased profits.

National

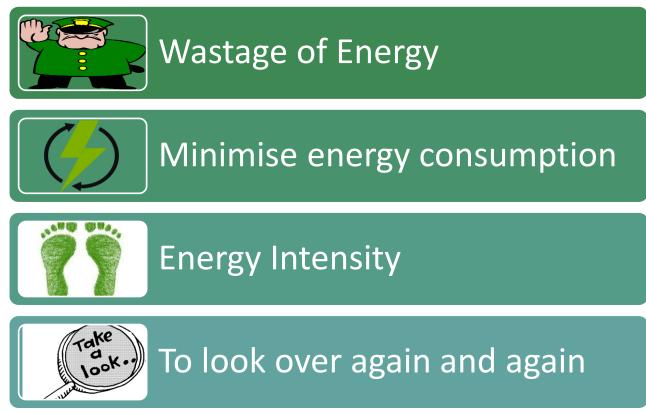
- Reduced fuel imports
- Resources to improve infrastructure
- Optimise the additional power demand
- Supports in meeting NDC commitments.

Global

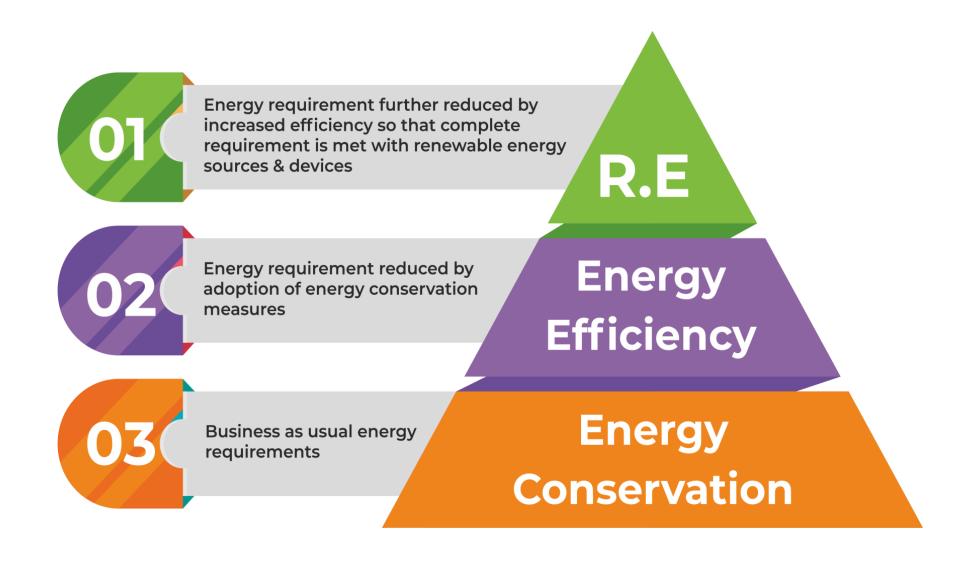
- Reduced Greenhouse gas emissions
- Maintains a sustainable environment.


Importance of Energy Efficiency

Scarcity+ Cost + Environment


Economic development of Grenada

Energy
Efficiency
is a must


Energy Management

Efficient energy use, is using less energy to provide the same level of energy service

"Energy Management Involves the utilization of the minimum quantity of energy required for the task at an appropriate quality, neither better nor worse than needed"

Energy Pyramid - Approach

Typical challenges - Energy Efficiency

- Energy is being monitored by electrical departments and they are responsible for power supply up to the equipment's;
- Separate departments for maintaining equipment's and instrumentation;
 - Difficulty in assessment and advice
 - Co-ordination problems
 - Limited focus, expertise in convincing end users and other department
 - Limited expertise in convincing budget heads to allot budget for Energy Conservation activities
- No procedure of re-looking the SOPs to refine the operating parameters based on todays or future requirements;
- Vendors / Equipment suppliers are not influencing the customer in terms of EE (only low-cost approach)

Energy Efficiency drive to Overcome the Challenge

- Draw out an Energy Vision for Facility (Building, Hotel, School etc.,)
- Compliance to various local Acts / Standards;
- Dedicated and empowered team to initiate, convince all stake holders, create awareness & implement energy efficiency measures;
- Set Target, allocate budget, Monitor, control and verify;
- Holistic approach with external expert intervention;
- Look forward to the ISO EE 50000 standards;
- Draw up a monitoring plan based on metering features of facility

Energy Saving Opportunities in Existing Buildings – Air Conditioner

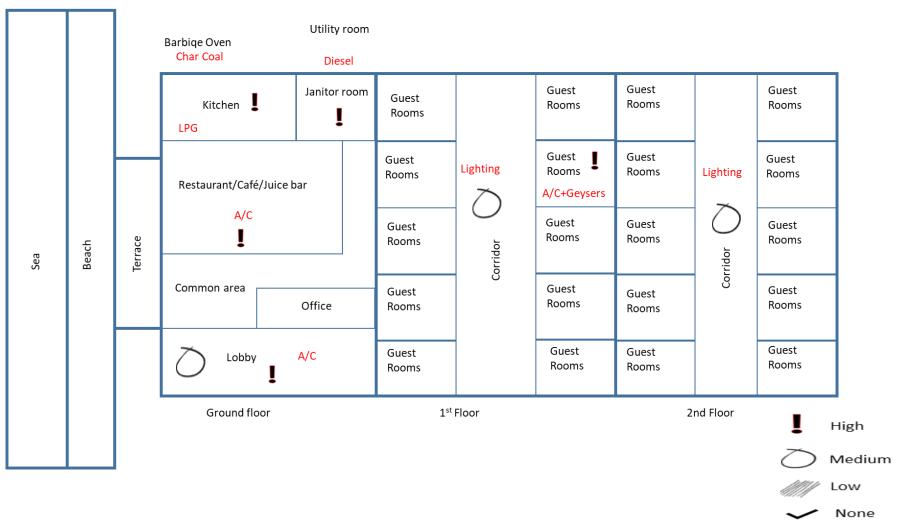
Most of these buildings are having window and split air conditioners

- Absolutely no operational control
- Poor maintenance
- High specific consumption
- Porous envelop

Commercial buildings having fully air-conditioned space like shopping malls (or) Hotels have installed new generation equipment's. We find

- Gaps in operation
- Gaps in maintenance
- No micro level monitoring plan

Best Practices in Existing Buildings – Air Conditioner


Air conditioning outdoor unit on a roof without shading

Air conditioner outdoor unit with shading

Energy Profile Map: Hotel

Energy Mapping

Identified Hotspots: Hotel

S No	No Priority Area Symbol		Hotspot Identified	Impact	Indicator Value
1	!	Guest Rooms & common areas	A/C High electricity usage due to split type A/Cs	Energy waste	Electricty consumption
2	!	Kitchen	LPG & Char-Coal used for cooking and Barbiqe oven	Energy waste	Amount of Char- coal or LPG used per month
3	!	Utility room	High diesel consumption for Diesel powered generator	Energy waste	Amount of diesel used per month
4	!	Guest rooms	Energy consumption of water geysers	Energy waste	Electricity bill
5	\bigcirc	Common areas/corridors	Lighting	Energy waste	Electricity bill

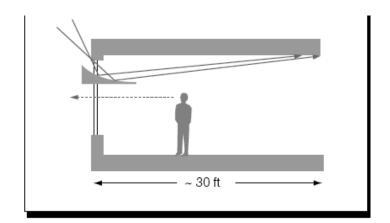
Action Plan: Hotel

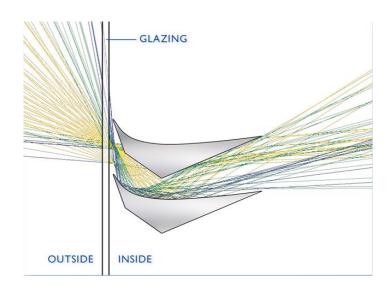
S. No. from priority table	Priority symbol	Improvement actions	Access to finance requirement	Assigned Person/ Responsibility	Timeline
1.	!	Switch to more energy efficient A/Cs. Use natural ventilation and avoid A/Cs in common areas	Yes		
2.	!	Provide training to kitchen workers and reduce the time they are using fuel without utilizing the heat for cooking.	No		
3.	!	Use solar powered water heaters	Yes		
4.	\bigcirc	Use motion sensing switches	No		

Example: Optimizing Lighting

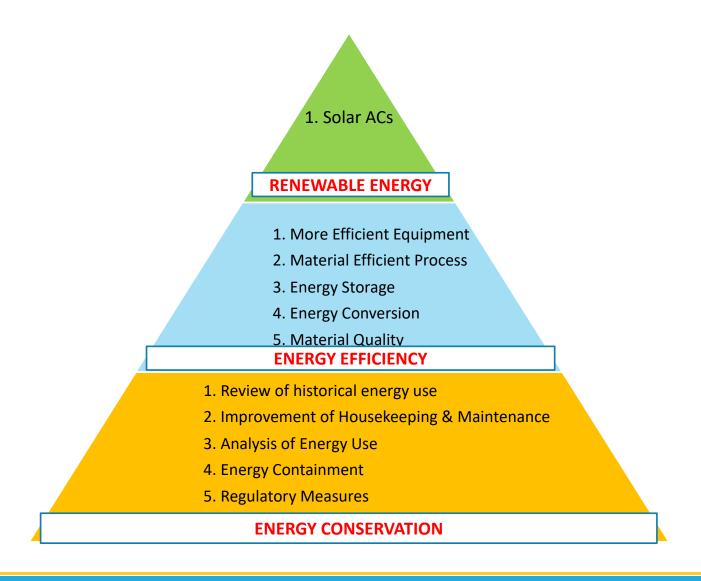
Efficient Lighting system and day lighting

- Use of light shelves and Light Louvers
- Design for maximum day lighting without glare
- Provide light shelves to push natural light deep inside the building

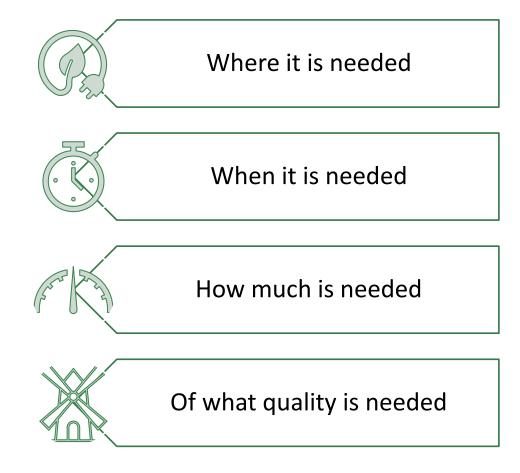

Efficient lamps and luminaries


- LED lamps instead of conventional lamps
- Higher efficiency luminaries
- Dimmable electronic Ballasts
- Lighter colored and reflective finishes
- LED for Street lighting and special applications such as building facades

Efficient Controls


- Occupancy sensors
- Daylight sensors

Task Lighting



Example: Air Condition

Energy Use

Using most energy and resources efficient system operating on cleanest possible energy

5 T's for Energy Conservation

Turn it OFF

Turn OFF/ Unplug the appliances from switchboard after using.

Turn it **DOWN**

Turning down the temperature of heating appliances

Turn it UP

Increase the thermostat temperature of cooling appliances

Turn it AROUND

Look around and use appliances efficiently.

Turn it OUT

Replace old inefficient devices with new energy efficient devices.

Energy Efficiency Standards and Labels (EE S&L)

Based on Grenada's electrical system, <u>high-efficiency split air</u> conditioners (Power by R290 refrigerant technology having zero Ozone Depletion Potential) are demonstrated.

Financial Assistance to Electric Vehicles (EV) for Tourism Sector

Initial Cost of EV for Caribbean Region (Imported): USD 40,000

Size of the battery : 40 kWh

Travel distance per charge : 240 KMs +

Operating Cost of Normal Car (Gasoline) : US 25 cents per KM

Operating Cost of EV (Based on Grid Power) : US 5 cents per KM

Return on Investment : 200,000 KMs

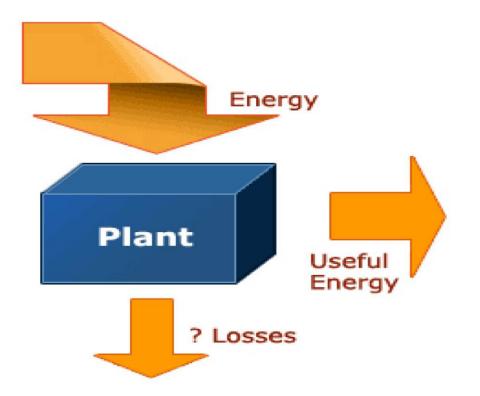
Assume a tourist vehicle (car) travel for 200 KM per day

Payback of investment cost : 4 Years

It is worth considering for **Financial Institutions** to establish solar powered EV charging stations at specified location and finance EV cars for tourism sector (existing tour operators / prominent players).

Interactive Session

Exercise for First day:

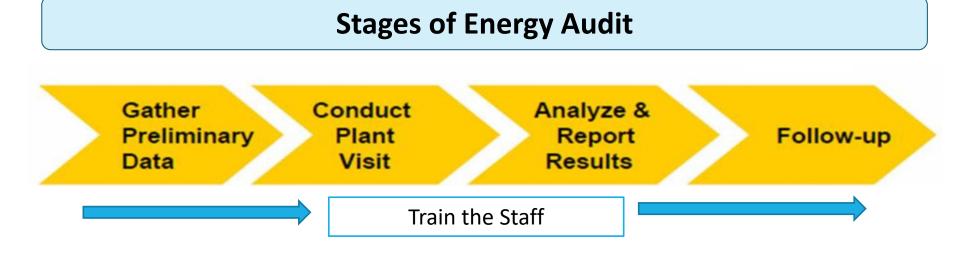

- 1) What is important to collect during home energy audit from monthly Electricity Bill kWh
- 2) Every home purchase solar based LED lamp for perimeter lighting. It means the household is promoting **Energy Conservation**
- 3) What type of electricity end users is predominant in Grenada? Residential sector

Question...??

- 1. What are some of the energy challenges you face in your building/ facility/ sectors?
- 2. Have you ever conducted energy audit of your facility.
- 3. Steps taken to minimize the losses or to reduce monthly energy consumption.

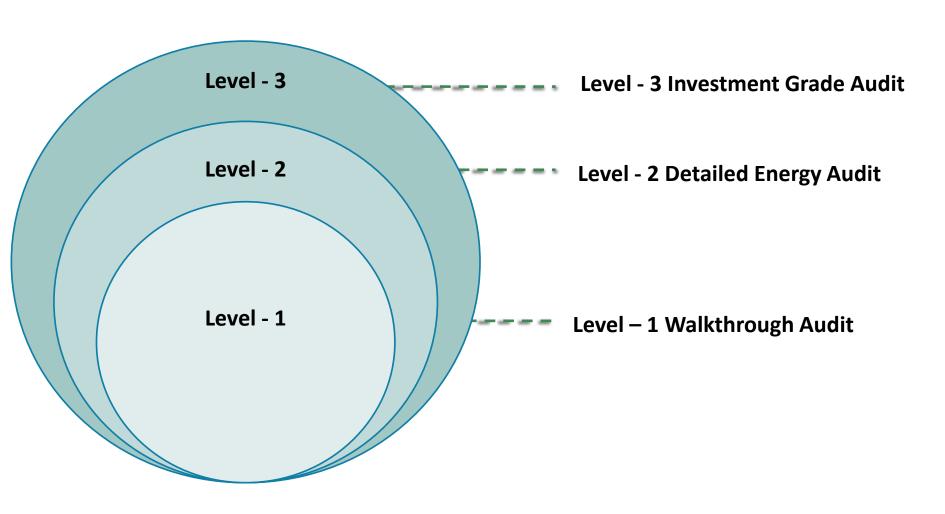
Session III Conduct of an Energy Audit

What is Energy Audit


Energy audit is defined as "The verification, monitoring & analysis of energy use, including submission of technical report containing recommendations for improving energy efficiency with cost benefit analysis and an action plan to reduce energy consumption.

Energy audit is an activity or process to reduce the **losses** along with **energy consumption** without effecting the overall output.

Need of Energy Audit


An energy audit will

- Help to understand how energy (both electrical and thermal) are used
- Identify where waste occurs and where there is a scope of improvement
- Give a positive orientation to energy cost reduction
- Translate conservation ideas into reality

Types of Energy Audit

Based on the methodology, Energy Audit can be categorized into three types

Level – 1 Walkthrough Audit

- Also called simple audit or walk-through audit.
- It involves:
 - One day or half-day visit to a plant.
 - Provides quick overview of energy use patterns Based on observation and historical data collected.
 - Identify energy intensive processes and equipment.
 - Identify energy inefficiency, if any
 - Estimate the scope for saving Findings will be a general comment based on energy best practices.
 - Identify the most likely areas for attention
 - Identify immediate (no-/low-cost) improvements
 - Identify areas for more detailed study/ measurements.

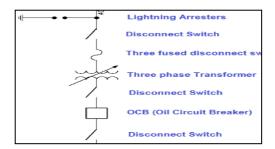
Level -2 Detailed Energy Audit

Detailed Energy Audit evaluates all systems and equipment which consume energy and the audit comprises a detailed study on energy savings and costs.

Detailed Energy Audit is carried out in **THREE** phases

Pre-Audit Phase

A pre-audit phase is the first phase or first step of a detailed energy audit. During this phase, the energy auditor intends to take the following measure:


Discussion with the site manager about the energy audit

Explains the meaning of the energy audit and data needed

Analyzes the major area of energy consumption

Obtains the site drawings such as a single line diagram of the electrical circuit, building layout, HVAC system

Energy audit team is finalized

Audit Phase

Calculate efficiency of the equipment's installed

Preparing process flow diagram and do energy balance

Identification of Energy Conservation (ENCON) opportunities

Energy-saving and payback period

Technical and feasibility report

Implementation plan for energy-saving measures

Post-Audit Phase

Assist and implement Energy Conservation Measures and monitor the performance

IMPLEMENTATION

MONITORING

Level – 3 Investment Grade Audit

- It includes steps of both Level-1 & Level-2 energy audit.
- It provide, in detailed analysis of capital-intensive projects and provide in-depth financial analysis such as Net Present Value (NPV) and Internal Rate of Return method (IRR).

This type of audit recommends **Guarantied Saving Verification Plan** – Which includes energy saving measures along with financial analysis such as NPV & IRR

Energy Audit Instruments

- To conserve energy, it is necessary to know where & how much energy is being consumed.
- Hence, Instruments Play a vital role in energy audit to characterize and quantify energy.
- Instruments also provide a means to monitor equipment performance and check condition
- Various categories of portable energy audit instruments are

Thermal Mechanical Chemical

Electrical Lighting

Electrical Instruments

Power quality analysers/Load analysers

To measure various electrical power parameters such as

- The fundamental value of Voltage and Current,
- Voltage and Current total harmonic distortion,
- Individual Voltage and Current harmonics
- Active, Reactive and Apparent Power (P, Q, S);
- Power factor
- Frequency
- Voltage and Current Unbalance assessment
- Demand analysis
- Other power quality parameters such as surge/dip and transient analysis

Mechanical Instruments

Tachometer/ Stroboscope

- Speed measurement of rotating equipment such as electric motors, pumps and blowers, conveyors etc.
- Available in contact and noncontact types.

Ultrasonic flow meter

- Measurement of the flow of liquids (Water) through pipelines of various sizes using ultrasonic sensors mounted on the surface of the pipelines.
- Flow can be recorded for the required period and downloaded for analysis

Mechanical Instruments

Anemometer

- Used to measure air velocity for estimating air flow rate
- Range: 0 30 m/s

Hot wire Anemometer

- Used to measure air velocity in duct to estimate air flow rate as well as air temperature
- Range: 0.25 to 30 m/s and 0 80 °C

Thermal Instruments

Digital manometer

- Used for measurement of differential pressure using pitot tubes
- Used to estimate efficiency of fan

Analog/Digital pressure gauge

- To measure the fluid or air pressure
- Suction and delivery side of pumps and fans

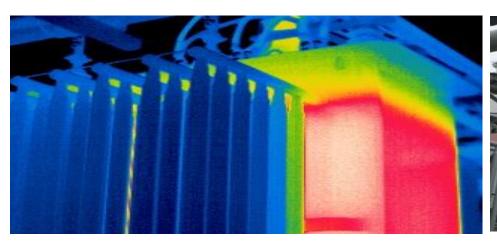
Analog/Digital hygrometer

 Measure temperature & humidity

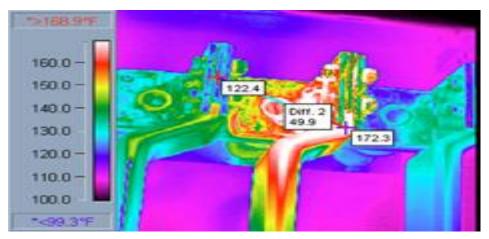
Infrared Thermometers

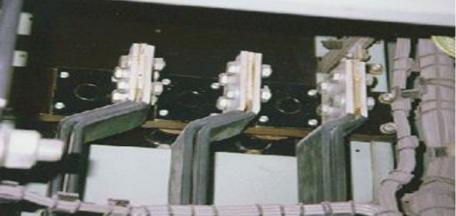
 Measurement of Surface Temperatures

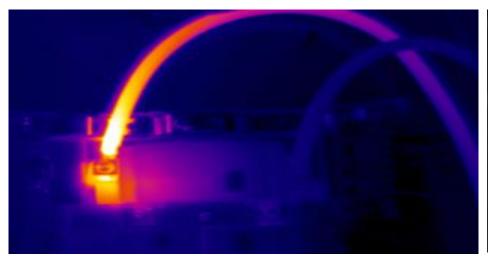
Thermography Camera

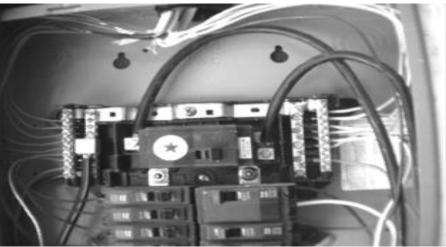

- Capture surface temperature and record it into memory card.
- Temperature variation over a given area.

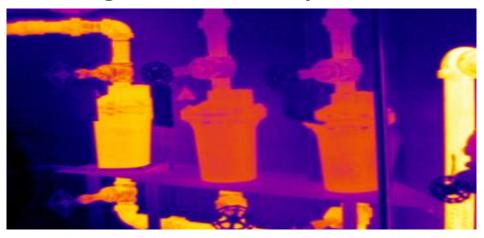
Thermocouples & Temperature Indicator


- Measurement of temperature
- Range : -50 to +400°C


Hot cooling fins due to low oil level in a transformer


Hot bolted bus bar connection




Example of Thermography Images

Hot lug connection

Leakage in Steam Trap

Thermal Instruments

Digital temperature & humidity data logger

- Dry bulb temperature & humidity
- Range: -15 to 150oC and 0 to 99 % RH

Lighting Instruments

Lux meter

- Used for illumination level measurement.
- Can be used to measure the instantaneous value or record the variation in lux level over a period.

Conductivity and PH meter

To analyse water quality

Flue gas analyser

- Measure Oxygen (O2) and Carbon dioxide (CO2) levels in the flue gas
- Other flue gas parameters such as Carbon monoxide (CO), Nitrogen Dioxide (NO2), Temperature and Humidity can also be measured

Other Accessories

Notepad or Tablet

 To quickly record data and observations on site

Calculator

• To do calculation

Measuring Tape

 To measure diameter or length of duct

Stages of Energy Audit

Gather Preliminary Data Conduct Plant Visit Analyze & Report Results

Follow-up

Preliminary Data Collected Before Site Visit

- Monthly Energy Consumption Detail
 - Monthly electricity bill
 - Monthly diesel or any other fuel consumption
- List of equipment's or appliances
- Other relevant information like total build-up area or annual production

Steps Followed During Plant / Facility Visit

Step-1: Identify the energy intensive instruments or appliances

Calculate Energy Consumption By Instruments or Appliances

Step-2: Identify energy saving opportunities

Step-3: Calculate annual energy saving (kWh/Year)

Step-4: Calculate annual cost saving (EC\$/Year)

Step-5: Calculate investment require (EC\$)

Step-6: Calculate payback period.

Energy Consumption Per Month (kWh/Month)

Date	Name	Quantity	Rated Input Power (W)	Operating Hour Per Day	Energy Consumption Per Day (kWh/Day)
1 Jan 2022					
2 Jan 2022					
3 Jan 2022					
-					
-					
31 Jan 2022					
Total Energy					

Above step need to be followed for all the equipment's or appliances present within the facility

Energy Consumption Per Month By Lamp (kWh/Month)

Date	Name	Quantity	Rated Input Power (W)	Operating Hour Per Day	Energy Consumption Per Day (kWh/Day)
1 Jan 2022	Lamp	10	28	12	3.3
2 Jan 2022	Lamp	10	28	12	
3 Jan 2022	Lamp	10	28	8	
-					
-					
31 Jan 2022	Lamp	10	28	10	
Total Energy					

Energy Consumption Per Day (kWh/Day) = Number of Appliances X Power (W) Day (Hrs.)

1000

Energy Consumption Per Month By Lamp (kWh/Month)

Date	Name	Quantity	Rated Input Power (W)	Operating Hour Per Day	Energy Consumption Per Day (kWh/Day)
1 Jan 2022	Lamp	10	28	12	3.3
2 Jan 2022	Lamp	10	28	12	3.3
3 Jan 2022	Lamp	10	28	8	2.2
-					
-					
31 Jan 2022	Lamp	10	28	10	2.8
Total Energy	78				

Energy Consumption Per Year (kWh/Year)

Date	Energy Consumption Per Month By Lamp (kWh/Month)
January	78
February	62
March	79
April	84
May	65
June	84
July	71
August	76
September	72
October	83
November	81
December	79
Energy Consumption Per Year (kWh/Year)	914

To simplify the process to calculate monthly or yearly energy consumption by different equipment's following information were collected from facility manager:

- Operating days in a month
- Operating days in a year

Example: Energy Consumption By Different Home Appliances

Appliances	Number	Rated Watts (W)	Operating Hours Per Day	Daily Energy Consumption (kWh/Day)	Operating Days Per Year	Annual Energy Consumption (kWh/Year)
LED Lamp	3	28	10	0.84	365	306.6
Ceiling Fan	2	75	13		365	
Refrigerator	1	120	24		365	
Water Heater	1	3000	4		90	
Water Pump	1	150	2		365	

Energy Consumption Per Day (kWh/Day)

Number of
Appliances

Rated Input
Power (W)

Operating Hour Per Day (Hrs.)

1000

Energy Consumption Per Year (kWh/Year)

Energy Consumption Per Day (kWh/Day)

Operating Days in a Year

Example: Energy Consumption By Different Home Appliances

Appliances	Number	Rated Watts (W)	Operating Hours Per Day	Daily Energy Consumption (kWh/Day)	Operating Days Per Year	Annual Energy Consumption (kWh/Year)
LED Lamp	3	28	10	0.84	365	306.6
Ceiling Fan	2	75	13	1.95	365	711.7
Refrigerator	1	120	24	2.88	365	1051.2
Water Heater	1	3000	4	12	90	1080.0
Water Pump	1	150	2	0.30	365	109.5

Sample Calculation: I

To help students at training institution realize that conscious effort helps in conserving energy

Practice

- Make a list of equipment's/appliances / gadgets used in the Training Institution;
- Find out the wattage of each;
- Find out the electric consumption of each;
- Find out the number of hours each in used per day;
- Find the rate of electricity per unit from the institution electricity bill;
- Calculate the electricity consumed per day by each and the cost incurred.

Sample Calculation: I

Appliance / Gadget	Number	Number of hours	Total energy per day	Total energy per month	Cost, ECD
Tube Light (28W)	8	10			
Computer (150W)	6	6			
Printer (120W)	2	3			
Ceiling Fan (75W)	10	12			

1000

Number of Days in a month: 30

Sample Calculation: I

Appliance / Gadget	Number	Number of hours	Total energy per day	Total energy per month	Cost, ECD
Tube Light (28W)	8	10	2.24	67.2	
Computer (150W)	6	6			
Printer (120W)	2	3			
Ceiling Fan (75W)	10	12			

1000

Number of Days in a month: 30

Sample Calculation: II

A fuel-efficient vehicle will cover more distance and hence not only conserve energy but also helps in reducing air pollution

Practice

- Observe the odometer reading of 2-3 common cars/Pick-ups in use under Ministry;
- Note the odometer reading when the fuel tank is filled up;
- Note the reading again when the tank needs to be filled up again;
- Note the quantity of fuel required to fill the tank;

Vehicle	Odometer reading when tank is being filled (a)	Odometer reading when tank needs to be filled (b)	Distance covered C = b - a	Quantity of fuel required to fill tank (fuel required to cover distance) (d)	Fuel Efficiency E = c/d
Car : Model 1	8,723	9,000		50	
Car : Model 2	8,723	9,000		80	
Pick-up : Model 1	8,723	9,000		40	
Pick-up : Model 2	8,723	9,000		45	

Thank You

