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Problem and Technical Impact
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Sources of Concern
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* RE is non-dispatchable
* Excess energy from RE may be wasted
e Storage needed to match generation and load.

* VRE generators employ power electronic converters.

* Behavioural response to disturbances very different from conventional
generation.

* Influence grid stability.

VRE generators have different attributes to

conventional generators. Is different (un)desirable?
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Grid Codes
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* Required by every power system. (Connection, operating, planning and market).

* Technical specifications that must be satisfied for any facility to
connect to the power system.

* Guide the evolution of the developing needs of the power system.
* Regularly revised.
* In Caribbean islands usually the responsibility of public sector.

VRE generators have to accept more responsibilities as

they replace conventional generators. Grid codes can
serve to ensure this successful transition.
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RE Technical Impact on Grid Codes
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* Ancillary Services
* System balance and frequency control.
* Reactive power and voltage control.

 Disturbance behaviour — short circuit contribution and system
protection

* Power quality

 Communications — real-time system operation (status, set-points,
control signals: breakers, active and reactive, start/stop instructions)



Prioritising Technical Requirements
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Energy Storage System (ESS
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Factors Influencing Selection of ESS
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Power Vs Energy

Power-oriented
e Short duration

* < 30 minutes
 Grid reliability services
* Frequency regulation

e Large shifts in the power
capacity in quick, sub-hourly
intervals.

Energy-oriented
* Long duration

* > 2 hours
* Peak load shaving

* Delivering power during periods
of the highest electricity
demand.



ESS Support Functions
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Distributed ESS

Conventional
central
generation

Variable
renewable
generation

Load leveling
for generation utilization
10-1000 MW, 1-8h

Spinning reserve
In case of line loss

Integration of
renewables
1-100 MW, 1-10h

220 kv 1-10 MW, 1-6h

110 kW

Load leveling
fior postponement of grid upgrade

10-500 MW, 0.25-1 h

- — T [

Peak shaving
0.5-10 MW, 1h

20 kV ring

110 kW

Stabilization
0.1-5 MW,
5 min

Micro

110 kv

ency regulation
1-50 MW, 0.25-1h

Residential/Small commercial

- Industry/

|

Large commercial

Solar PV time shift
1-100 KW, 2-6h

https://new.abb.com/docs/librariesprovider78/eventos/jjtts-2017/presentaciones-peru/(dario-cicio)-bess---battery-energy-storage-system.pdf?sfvrsn=2
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Synthetic Inertia
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* Battery energy storage systems

( B ESS) Dynamic Response
* Short-duration storage 50-2“““:/ Incident
technologies for primary frequency ?so,oms 0s _60s _ Time 30 mins
control. = J E ESeconda"ry (to 30 mins) /’,
> 49.8f - -—-- e i /
* Grid-scale batteries, respond at a S RoCoF | Primary ; ; 7
much faster rate than the g i E _7 " Reserve —»
mechanical actions of traditional = *°[ " P e
governor controls and blade pitch Peg._ | B
or wind turbine SpGEd control 49.2 ---"}Eéli-:\f‘ : Dynamic and Non-Dynamic Service

mechanisms.
* Economics.

http.//www.ee.co.za/article/synthetic-inertia-grids-high-renewable-energy-content.html
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Main Storage
Technologies

O

ST. AUGUSTINE
CAMPUS

Batteries
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Capacitors
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Flywheels
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@ Configuration

: ® Rotor
Vertical for optimum efficiency

Integral with hub ° Stores energy
in the form of
rotational

kinetic energy.
* > 60,000 RPM

-+——& Magnetic Bearing

Fully active 5-axis

@ stator

Dual Mode
Motor / Generator

® Hub
= Housing Aerospace high
Vacuum environment performance steel . 18




Flywheels
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* Flywheels can work with batteries.
* Flywheel = power-oriented. Virtual Flywheel
 Battery = energy-oriented. i T e

* Response time exponentially faster

50/60Hz ~ — 60-120Hz
than ramping natural gas generators <§E - |

(m S) . Frequency - Frequency
* Technology improving. LT 00
ower 3,600 RPM

* Environmentally friendly.
* No (dis)charging capacity degradation.
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Batteries
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* Low maintenance (no moving parts),
portable, efficiencies (65% to 85%)

* Frequency control of weak electric
grid by absorbing/providing power
to/from the network.

e Source of synthetic inertia.

e Lithium lon — 30 mins to 3 hours, most
cost effective energy density, highly
configurable. Sophisticated BMS.

* Recycling challenges.
* Redox and Zinc-hybrid.
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Wind power generation Power system

Power )
generation Combined
output output
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* World’s largest battery

Charging 1 Iﬂ[ﬁuschargmg

5 energy—storage system:
Substation lithium-ion 240 MW
facility output and 720 MWh
_________________________________________________________________________________________________________________________ rated capacity.
e [ Storggstg%ttery * Wind-power and storage
— (_I_) %torage prOJeCt IS at Klta'
! Sontrol = Toyotomi Substation in
system . 1 Storage battery . .
| | pemete 1 Toyotomi, Teshio,
EHHT TS T . sem  Hokkaido, Northern
| Ubmiobayediy B sapen
e ———— T e "« March 2023.
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power capacity cost energy capacity cost

dollars per kilowatt dollars per kilowatthour
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all ‘

duration duration

Source: U.S. Energy Information Administration, Form EIA-860, Annual Electric Generator Report

https://www.eia.gov/todayinenergy/detail.php?id=36432

Capital cost of a utility-scale lithium-ion battery storage system sliding another

52% between 2018 and 2030. The transport and electricity sectors will benefit.
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ESS Consideration Factors
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* Ancillary Services (sec, mins)
e Energy Dispatch (hr)

e Optimization of:
* Charging and discharging schedule.
 Size and placement.
* Spinning reserves.

e Distributed or Centralized.
 Environmental friendliness.
* Hybrid ESS.

* Economics.
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Static Synchronous Compensators
(STATCOM)

* STATCOMs are regulating devices composed of a VSC that can
exchange reactive power with the electrical network. Some can also
supply active power.

* Functions include:
* Reduce power fluctuations
* Provide voltage support and damping
* Improve transient stability

* BESS expected to act as compensators in future grid.



Other Technical Oriented
Challenges



Technical Capacity of Staff
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* Planning
e Software familiarity
* Missing data for models

e Operational
* Data capture
e Data analysis
* Optimize

e Reduce consultant costs
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Existing Models
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* As VRE penetration increases, the grid code is mandated to develop
simulation models for the VRE plants.

e Updated network models
* Steady state
* Dynamic models
* Obsolete equipment

* Software compatibility and functionality
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Resilience
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Resilience
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Resilience includes the ability to withstand and recover from deliberate
attacks, accidents, or naturally occurring threats or incidents. Resiliency
measures do not prevent damage; rather they enable electric facilities
to continue operating despite damage and/or promote a rapid return
to normal operations when damages and outages do occur.

Hardening and Resiliency: U.S. Energy Industry Response to Recent
Hurricane Seasons (August 2010) prepared by Infrastructure
Security and Energy Restoration, Office of Electricity Delivery and
Energy Reliability, U.S. Department of Energy.
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Post Disaster 201s.07.22

* Most hurricanes may encompass multiple islands and countries.

* Availability of technical expertise may not be geographically
dispersed.

* Transportation and accommodation of technical crews with
specialized equipment is costly, even cost prohibitive.

* In many cases technical state resources (human and equipment) may
not be administratively agile to facilitate rapid deployment to affected
areas.



Recommendations to CARILEC 201807.22

 CARICOM fund to engages private sector for technical services.

* CARILEC led detailed and updated spares inventory based on
technical specifications (voltage, kVA, Hz) identifying nearest location
In region.

* Possible formation of a regional body similar to NERC.
* CARILEC led post natural disaster best practice protocol/manual.

* University led development of a basic post natural disaster testing
toolkit. Minimal resources to yield reasonable asset status.

 Utilities to ensure institutional knowledge is not lost.



Resilience and Reliability Domains
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Resilience Domain Reliability Domain

. D"

architectural grid resilience regimen

* Cyber-physical * Loss of access

!
! \
l jstress resist strain adjust! !
! stress , ooy ! !
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Grid St.ress o : R N Sy 1 , Grid Corppromlse Grid Recovery |
* Device/sys fail : * Ride through momentaries | * Sustained outage * Isolate I
* Congestion ! : * Momentaries cleared | * Breaker lockout * Backup gen operates |
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https://gridmod.labworks.org/sites/default/files/resources/
Theory%200f%20Grid%20Resilience%20final_ GMLC _0.pdf
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Typical Microgrid
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e Critical facilities,
areas/regions
powered after a
(natural) disaster.

* Create electrical
islands.

* Biggest challenge
is protecting the
assets.
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Conclusions
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* Many technical considerations for RE integration — there is a method!

* Energy storage requirements must be carefully conSidered.
* Resilient oriented options.
* Microgrids create electrical islands within an island.

e Opportunity to learn from others and continue to develop regional
capacity.
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