

Grenada Capacity Building Programme for Energy Management and Energy Audits

Webinar III : Save Energy, Save Money

Target audience: Training institutions, government ministries and statutory organisations

Date: 21- 21 April 2022 Time: 9:00 am to 12:00 pm Grenada Time

Day-2: Energy Efficiency Measures & Financial Planning

- □ Review of Energy Use
- □ Activities to do During Site Assessment
- □ Identification of Energy Conservation Measures
- Energy Saving Calculations
- □ Financial Viability of The Project
- □ Energy Audit Report Format
- **Q&**A

Recap From Day-1

Energy efficiency is **"using less energy to provide the same service"** through technology upgradation.

Energy conservation is any **"behavior change that results in the use of less energy"** to do same work.

Energy Pyramid - Approach

5 T's for Energy Conservation

Question...??

1. Who will consume more power

Water Kettle = 1200 Watts

Bread Toaster = 850 Watts

Refrigerator = 120 Watts

An energy audit will

- Help to understand how energy (both electrical and thermal) are used
- Identify where waste occurs and where there is a scope of improvement

Based on the methodology, Energy Audit can be categorized into three types

Energy Audit Instruments

- To conserve energy, it is necessary to know where & how much energy is being consumed.
- Hence, Instruments Play a vital role in energy audit to characterize and quantify energy.
- Instruments also provide a means to monitor equipment performance and check condition
- Various categories of portable energy audit instruments are

Example: Energy Consumption By Different Home Appliances

Appliances	Number	Rated Watts (W)	Operating Hours Per Day	Daily Energy Consumption (kWh/Day)	Operating Days Per Year	Annual Energy Consumption (kWh/Year)
LED Lamp	3	28	10	0.84	365	306.6
Ceiling Fan	2	75	13		365	
Refrigerator	1	120	24		365	
Water Heater	1	3000	4		90	
Water Pump	1	150	2		365	

Energy Consumption Per Day (kWh/Day)		Number of Appliances	x	Rated Input Power (W)	t X	Operating Hour Per Day (Hrs.)
				100	0	
Energy Consumption Per = Year (kWh/Year)	En Da	ergy Consumptio y (kWh/Day)	on F	Per x	Opera [.] Year	ting Days in a

Example: Energy Consumption By Different Home Appliances

Appliances	Number	Rated Watts (W)	Operating Hours Per Day	Daily Energy Consumption (kWh/Day)	Operating Days Per Year	Annual Energy Consumption (kWh/Year)
LED Lamp	3	28	10	0.84	365	306.6
Ceiling Fan	2	75	13	1.95	365	711.7
Refrigerator	1	120	24	2.88	365	1051.2
Water Heater	1	3000	4	12	90	1080.0
Water Pump	1	150	2	0.30	365	109.5

To help students at training institution realize that conscious effort helps in conserving energy

Practice

The make a list of equipment's/ appliances / gadgets used in the Training Institution;

Find out the wattage of each;

Find out the electric consumption of each;

Find out the number of hours each in used per day;

Find the rate of electricity per unit from the institution electricity bill;

^CCalculate the electricity consumed per day by each and the cost incurred.

Sample Calculation : I

Appliance / Gadget	Number	Number of hours	Total energy per day	Total energy per month	Cost, ECD
Tube Light (28W)	8	10			
Computer (150W)	6	6			
Printer (120W)	2	3			
Ceiling Fan (75W)	10	12			

Energy Consumption Per Day (kWh/Day)	=	Number of Appliances	x	Rated Input Power (W)	x	Operating Hour Per Day (Hrs.)
				1000		
Energy Consumption Per = Year (kWh/Year)	En Da	ergy Consump iy (kWh/Day)	tion	Per C x Y	Opera ⁄ear	iting Days in a
Number of Days in a month : 30 Per Unit Electricity Cost: 0.78 EC\$/kWh						

Sample Calculation : I

Appliance / Gadget	Number	Number of hours	Total energy per day	Total energy per month	Cost, ECD
Tube Light (28W)	8	10	2.24	67.2	52.4
Computer (150W)	6	6	5.40	162.0	126.3
Printer (120W)	2	3	0.72	21.6	16.8
Ceiling Fan (75W)	10	12	9.75	292.5	228.1

Energy Consumption Per	=	Number of Appliances	x	Rated Input Power (W)	x	Operating Hour Per Day (Hrs.)
Day (Kvvii/Day)				1000		
Energy Consumption Per Year (kWh/Year)	= E C	nergy Consumpt Day (kWh/Day)	ion	Per C x Y)pera ear	iting Days in a

Number of Days in a month : 30 Per Unit Electricity Cost: 0.78 EC\$/kWh A fuel-efficient vehicle will cover more distance and hence not only conserve energy but also helps in reducing air pollution

Practice

Common cars/Pick-ups in use under Ministry;

Note the odometer reading when the fuel tank is filled up;

Note the reading again when the tank needs to be filled up again;

Note the quantity of fuel required to fill the tank;

Vehicle	Odometer reading when tank is being filled (a)	Odometer reading when tank needs to be filled (b)	Distance covered C = b - a	Quantity of fuel required to fill tank (fuel required to cover distance) (d)	Fuel Efficiency E = c/d
Car : Model 1	8,723	9,000		50	
Car : Model 2	8,723	9,000		80	
Pick-up : Model 1	8,723	9,000		40	
Pick-up : Model 2	8,723	9,000		45	

A fuel-efficient vehicle will cover more distance and hence not only conserve energy but also helps in reducing air pollution

Practice

Observe the odometer reading of 2-3 common cars/Pick-ups in use under Ministry;

Note the odometer reading when the fuel tank is filled up;

Note the reading again when the tank needs to be filled up again;

Note the quantity of fuel required to fill the tank;

Vehicle	Odometer reading when tank is being filled (a)	Odometer reading when tank needs to be filled (b)	Distance covered C = b - a	Quantity of fuel required to fill tank (fuel required to cover distance) (d)	Fuel Efficiency E = c/d
Car : Model 1	8,723	9,000	277	50	5.54
Car : Model 2	8,723	9,000	277	80	3.46
Pick-up : Model 1	8,723	9,000	277	40	6.92
Pick-up : Model 2	8,723	9,000	277	45	6.15

Day - 2

Session II

Review of Energy Use and Site Assessment

Preliminary Review of Energy Use

Preliminary evaluation of energy use is important to know

Energy End Use

 $EUI = \frac{Annual \ Energy \ Use}{Square \ Footage}$

Yearly or Seasonal Variation in Power Consumption

Energy Utilization Index (EUI) of Buildings

Specific Energy Consumption (SEC) in Manufacturing Industries $SEC = \frac{Annual Energy Use}{Annual Production}$

EUI and SEC would help to **benchmark** the data against energy use in similar buildings or industries. This also helps to find the potential magnitude of **energy efficiency opportunities** and provide an early estimate of potential savings

Preliminary Review of Energy Use

Information required for preliminary review of energy use

Monthly utility bill would help to identify any changes in energy use over time and potential causes for those changes

- After the preliminary review, the energy auditor will conduct a physical assessment of facility and its operations.
- The energy auditor will meet with key operations and maintenance staff to know about equipment performance and discuss any concerns or issues with the facility

On-Site Survey				
Monitor electrical energy use by equipment's	Monitor thermal energy use by equipment's			
Heat balance of thermal energy	Electric energy balance			
Calculate operating efficiency of different appliances/equipment's	Identify energy saving potential			

Based on the requirement Energy Auditor will use energy audit instrument/meter to capture the usage electrical and thermal energy

Case Study – 1 Review of Energy Use and Site Assessment

(Same procedure can be followed for Educational institutes, government buildings, hotels and other facility)

Following data was collected for the preliminary review of the energy use

- Equipment details
- One-year electric energy consumption detail (Monthly electricity bill)

Equipment	Quantity	Rating (Wattage)	Equipment	Quantity	Rating (Wattage)
T8 FTL	124	36	Water Heater	2	1200
Ceiling Fan	50	75	Autoclave	1	500
Projector	15	150	Ice flakes Maker	1	500
Desktop Computer	20	200	Incubator	1	500
Deep Freezer (-80oC)	1	2500	Air Conditioner	4	1300
Deep Freezer (-20oC)	1	1000	Distilled Water Unit	1	500
Water Pump	1	1500	MV Lamp	2	250

Other information collected are Location, Operating Hours in a year and Switching

Mechanism (Manual or Automatic)

Equipment details would help to identify key energy consumption areas

Monthly Electrical Energy Consumption

Annual Energy Consumption, kWh	Annual Electricity Charges, ECD
58740	16,209

Case Study – 1 Review of Energy Use and Site Assessment

Conclusion from the preliminary review of the energy use

- Major energy consuming area
- Potential magnitude of energy efficiency opportunities.
- Provide an early estimate of potential savings
- Average daily electrical energy consumption
- Seasonal variation in load

Site Assessment

- Monitor load variation during day and night time; using portable three phase power analyzer.
- Check load current variation in three phases and neutral
- Visual inspection of
 - Rated efficiency of the equipment's
 - Manual, timeclock or automated HVAC control methods
 - Interior and exterior lighting systems and related controls
 - Hot water systems
 - Operating practices of all equipment's

Case Study – 1 Review of Energy Use and Site Assessment

Daily Load Variation 15,50 15,00 14,50 Active Power, kW 14,00 13,50 13,00 12,50 12,00 11,50 11,00 рт 1:10 am 2:00 am 2:50 am 3:40 am 4:30 am 5:20 am 6:10 am 7:50 am 9:30 am шd Ъ bm md M bm bm шd шd рт рт bu 12:20 am 7:00 am 8:40 am 10:20 am am bD ЪД bu 10:40 11:30 11:10 8:10 1:30 2:20 3:10 4:00 7:20 00:6 9:50 12:00 4:50 5:40 6:30 .2:50 1:40

Load variation during day and night-time

Observation during site assessment

- Lights in classrooms and staffrooms was found ON during daytime. Sufficient daylight is coming in classroom and staffroom.
- During night-time, all corridor lights were switched ON.
- Projector & Desktop Computers was found to be in standby mode
- Installed air conditioner units was found to be inefficient (non-inverter type)
- Set AC temperature was found to be 20°C
- In all the classrooms and laboratories, individual switches were provided for each light and fan. This is a very good practice as it enables only the required number of lights and fans being switched ON

Energy Conservation Measure - 1 Replace the conventional Fluorescent Tube Light with energy efficient LED tube lights.

Energy Conservation Measure - 2 During day time, **switch OFF** the tube lights wherever not required and use **Natural Day Light** - Create awareness among students and staff to promote energy conservation

Energy Conservation Measure - 3 During night time, **switch OFF** alternate lights in corridor and maintain minimum lux level.

OR

Provide motion sensor to alternate lights in corridor. By doing so only alternate lights would be ON during night time and remaining lights would automatically switch ON during any movement.

Case Study – 1 Review of Energy Use and Site Assessment

Energy Conservation Measure - 4 Replace the conventional ceiling fan with energy efficient BLDC fan.

BLDC Fan	Traditional Fan
35 W	57 W

- BLDC motor fans consume less power as compared to the traditional ceiling fans.
- These fans come with a **remote control uni**t thereby allowing you to switch ON and OFF the fans easily.
- BLDC motor fans come with a Timer and Sleep mode that will enable you to set a specific time limit (number of hours) while sleeping.

Energy Conservation Measure - 5 Set the temperature of AC around 24 - 27 °C.

By doing so **3-4% power can be saved.** (Savings in lower temp (<24°C) – 6% for every rise in 1°C and in higher temp (>24°C) – 4% for every rise in 1°C)

Feeling HOT at 27°C

Set the temperature of AC at 27°C and use fan at optimum speed.

Avoid using ceiling fans because hot air will be redistributed. Rather, use floor fans to provide better airflow for added comfort and cooling

Case Study – 1 Review of Energy Use and Site Assessment

Energy Conservation Measure - 6 Replace the old non-inverter AC with new energy

efficient inverter AC.

Case Study – 1 Review of Energy Use and Site Assessment

Energy Conservation Measure - 7 Reduce the heat load of room to reduce electricity consumption by Air Conditioner.

- By putting curtain on windows.
- Close door and windows.
- Arrest air leakage near door and windows.
- Avoid ironing of clothes in AC room.

Energy Conservation Measure – 8 Keep AC outdoor unit (Condenser Unit) in shade and

ventilated area.

Energy Conservation Measure - 9 After educational hour, switch OFF the desktop computer

and projectors from main power supply. This will help to save Stand-By power.

Other devices which consume stand-by power are:

Case Study – 1 Review of Energy Use and Site Assessment

Energy Conservation Measure – 10 Replace Electric Water Heater With Solar Water Heater

- **1. Electric Water Heater**
 - Convert electric energy into heat energy.
 - Easy installation, Less expensive & require less maintenance.
 - Operating cost is high and don't give instant hot water

2. Solar Water Heater

- The light radiations from the sun are converted into heat energy.
- Operation cost is ZERO. As sun rays are FREE.
- Hot water is available even during power cut.
- Need additional rooftop space and also required annual maintenance.

Case Study – 1 Review of Energy Use and Site Assessment

Energy Saving opportunities - Commercial Sector

- Retrofit interior corridor fixtures with LED lamps, where continuous usage is required
- Replacing conventional exit signs with energy-efficient LED (or) colour reflector;
- Extensively use of daylighting, which may require installation of sky tubes, blinds or shades to control heat gain and glare;
- Gardens, outdoor building perimeter areas, pavements and footpaths can be lit with solarbased outdoor lamps with an inbuilt battery;
- Lack of shading increases heat loads in the hot/humid climate and increases air conditioning costs;
- Install level control or pressure switch based control to switch ON/OFF the booster pumps;
- Use ENERGY STARTM rated appliances (UPS, Data servers, Printers etc.) for office or commercial usage where they are operated for long hours (~ 30% reduction)

Energy Saving opportunities - Industrial Sector

- Provided interlock or process control logic to avoid the idle operation of electric motors;
- Replacing conventional exit signs with energy-efficient LED (or) colour reflector;
- Avoid multiple rewinding of motors. The greater the number of rewinds more is the efficiency drop;
- Avoid idle cooling water circulation in DG sets, compressors and refrigeration systems;
- Conduct a water balance study to minimize water consumption and leaks;
- Use of blower air instead of compressed air (aeration in effluent treatment plants, drying applications etc.);
- Use of hydraulic or electrical tools in place of pneumatic tools;
- Use variable speed drives and direct digital controls on water circulation pumps, motors and controls.

Energy Saving opportunities - Agriculture Sector

- Use of sprinkler maintains uniform water application to the crops; it reduces pumping energy demand compared to conventional methods for crops;
- Use of Solar PV pumps for agriculture (including A brushless DC pumps);
- Use of high-efficiency water pumps at agro-processing plants;
- Use of fibre-reinforced plastic (FRP) fan blades for the drying section (ventilation fans);
- Use less energy consumption LED fixtures, which will last longer than fluorescent lamps bulbs, sodium and mercury lamps across agricultural facilities.

1) During the Site assessment, it is not so important to consider the power variation trend of the incomer. **True /False False**

- 2) What is the name of Energy Efficient replacement of a conventional fan motor? BLDC motor
- 3) Mention two major contributors of Energy consumption in a Commercial facility.
 - 1. Lighting 2. Air conditioning
- 4) Which is the most common source of energy being used in all the sectors.?Electricity
- 5) Replacing old equipment with new equipment which consumes less energy

Energy Conservation / Energy Efficiency Energy Efficiency

Question...??

1. What all energy efficiency measures can be implemented in your facility.

Session III

Data Analysis and Audit Report

Energy Data Analysis

- Energy data analysis methodology varies with respect to the type of facility and study objectives to be achieved.
- Analysing the collected information will help in understanding the historical and present performance level of the respective facility.
- In order to manage day-to-day energy consumption
 efficiently, it is highly essential to analyse the energy
 consumption data, benchmark energy use and set targets
 that can result in significant energy cost savings along with
 carbon emission reduction.

"we can't manage what we can't measure"

Typical Analysis methods:

- Spreadsheet based analysis using engineering formulae taking into account time variation based analysis.
- Analysing hourly, daily, weekly and seasonal load variation pattern of the incomer Activity based and Equipment based.
- Simulation based analysis by incorporating sensors with data loggers.
- Develop performance metrics using some key performance indicators (KPIs) such as
 - Energy intensity (kWh/Sq.m)
 - Energy Utilization Index
 - Specific energy consumption
 - Specific water consumption

Benefits: Not just identifying energy savings

- Develop a complete insight of the facility on use of various resources
- Helps in detecting anomalies
- Develop awareness and engage the end user
- Impact the culture positively

Typical Energy Performance Assessment Dashboard

Break-up of energy cost

Typical Energy Management System

Typical Energy Performance Assessment Dashboard

Economic Analysis

Current Energy cost(Utility rates per unit of Electricity or Diesel) is used for estimating the annual energy cost savings of identified ECMs.

□ Investment for implementation of measures depends on the type of the ECMs:

- O & M (Operational and Maintenance)
- Retrofitting
- Technology upgradation

ATTRACTIVENESS OF THE INVESTMENT FOR A PARTICULAR ECM DEPENDS ON THE PROJECT

VIABILITY PRACTICALLY AS WELL AS FINACIALLY.

□ Tools for evaluating financial viability:

- Simple Payback period
- Return on Investment (ROI)
- Lifecycle analysis
- Internal Rate of Return (IRR)
- Net present Value

Accurate Investment cost data to avoid underestimating or over estimating of funds.

Detailed cost analysis to ensure valid economic analysis for high investment EC projects.

□ Tools for evaluating financial viability:

Name	Usage	Application areas
Simple payback period (SPB)	SPB is a simple analysis tool used frequently in energy efficiency project upgrades and maintenance activities to calculate energy payback period.	Home energy assessment, Industries & Businesses (Small or big) depending on the type of investment. <i>"Smaller the SPB, the attractive is the investment."</i>
Return on Investment (ROI)	ROI is a Profitability metric used to evaluate the attractiveness of an investment. Majorly useful for measuring success over time and making investment decisions by apple-to-apple comparison.	Factory expansion, Stock market investments, Real estates, commercial vehicle procurement etc. "A Positive ROI indicates profit and a negative ROI indicates loss."
Net Present Value (NPV) & Internal Rate of Return (IRR)	NPV is the difference between the present value of cash inflows and the present value of cash outflows over a period of time. IRR is a calculation used to estimate the profitability of potential investments.	 NPV and IRR concepts are applied majorly in Capital budgeting for large and long term projects. <i>"If a project's NPV is above zero, then it's considered to be financially worth considering. And IRR generates the percentage return that the project is expected to create."</i>
Life cycle cost analysis (LCCA)	LCCA is a tool to determine the most cost- effective option among different competing alternatives to purchase, own, operate, maintain and, finally, dispose of an object or process	Asset monitoring, Large infrastructure projects etc.

Accurate Investment cost data is needed to avoid underestimating or over estimating of funds.

Detailed cost analysis to ensure valid economic analysis for high investment EC projects.

While analyzing potential analyzing energy saving opportunities:

- □ Feasibility of system replacement
- **Ease of implementation**
- **Risk of failure**
- □ Improved system reliability

Desitive or Negative impact on the operational and maintenance costs

Calculations for some of the frequently used measures were listed below:

Type-1: Operational and maintenance

- ✓ Switching OFF devices (eg: lights or fans) when not in use or reduced hours of operation
 - Manual operation
 - Automatic operation using sensors and actuators

> Type-2: Energy improvement payback calculator for retrofit opportunities

- ✓ Changing old inefficient devices with new efficient devices
 - ✓ Example: Old inefficient lights with new energy efficient LED lights
 - ✓ Conventional fans with BLDC fans
 - ✓ Old Air conditioning units with latest technology AC units

Analysis of Energy Conservation measures has three major steps involved.

Step 1: Energy Saving Calculations

Step 2. Investment Assessment

Step 3. Economic Analysis

Daily Energy Consumption

Energy Consumption Per Day (kWh/Day)	=	Number of Appliances	x	Rated Input Power (W)	x	Operating Hour Per Day (Hrs.)		
				1000)			
Annual Energy Consumption								
Energy Consumption Per = Year (kWh/Year)	Ene Day	ergy Consumpti y (kWh/Day)	ion P	er x	Opera Year	ting Days in a		
Annual Energy Saving								
Annual Energy Saving = (kWh/Year)	An Co Pre	nual Energy nsumption in esent Case	-	Annual E after imp Conserva	nergy Iemer Ition N	Consumption nting Energy Aeasure		

Х

Annual Cost Saving

Annual Cost Saving (EC\$)	=
---------------------------	---

Annual energy Saving (kWh) Per Unit Electricity Cost (EC\$/kWh)

Investment Assessment

Investment cost of the equipment, project management charges, Annual O & M charges.

Financial Analysis

Investment (EC\$)

Simple Payback Period (Years)

Annual Cost Saving (EC\$)

A facility has the following equipment which are being used for certain hours during the day.

Name	Wattage, W	Quantity	Op. load, W	Op. hours/day	Energy consumption, kWh/day
		А	В	С	D = (AxBxC) /1000
Fluorescent tube lights	36	10	36	15	5.4
Split air condition units	2600	3	1320	15	59.4
Water pump	750	1	700	5	3.5
Street lights	150	5	150	12	9.0
Total					77.3

The list of equipment are provided below:

Q1) Calculate the total daily energy consumption of the facility?

Total daily energy consumption of the facility = 77.3 kWh/day

Based on the Understanding, propose some of the possible energy consumption opportunities that exist based on the currently used equipment

Name	Energy saving opportunities
Fluorescent tube lights	 Minimising the operating hours by switching off lamps when not required. Replace the existing lamps with energy efficient LED tube lights
Split air condition units	
Water pump	
Street lights	

The following are the energy saving measures identified

Name	Wattage, W	Proposed measure
Fluorescent tube lights	36	Replacement with LED
Fluorescent tube lights		Minimizing Operating hours
Split air condition units	2600	Replacement with Inverter based Split AC
Split air condition units		Minimizing Operating hours
Water pump	750	Minimizing Operating hours by using level controller
Street lights	150	Replacement with LED

Energy saving calculations - Reducing op.hours

	Old Scenario					New Scenario - 1 (Reducing op.hours)				
Name	Wattage, W	Quantity	Op. load, W	Op. hours/day	Energy, kWh/day	Wattage, W	Quantity	Op. load, W	Op. hours/day	Energy, kWh/day
		А	В	С	D=(AxBxC) /1000		E	F	G	H=(ExFxG) /1000
Fluorescent tube lights	36	10	36	15	5.4	20	10	36	12	4.32
Split air condition units	2600	3	1320	15	59.4	2600	3	1320	12	47.52
Water pump	750	1	700	5	3.5	750	1	700	4	2.8
Street lights	150	5	150	12	9.0	70	5	150	12	9.0
Total					77.3					63.64

Q2) Calculate the total daily energy consumption of the facility?

Energy saving calculations - Equipment replacement

	Old Scenario					New Scenario - 2 (Equipment replacement				cement)
Name	Wattage, W	Quantity	Op. load, W	Op. hours/day	Energy, kWh/day	Wattage, W	Quantity	Op. load, W	Op. hours/day	Energy, kWh/day
		А	В	С	D=(AxBxC) /1000		E	F	G	H=(ExFxG) /1000
Fluorescent tube lights	36	10	36	15	5.4	20	10	20	15	3.0
Split air condition units	2600	3	1320	15	59.4	2600	3	690	15	31.05
Water pump	750	1	700	5	3.5	750	1	700	5	3.5
Street lights	150	5	150	12	9.0	70	5	70	12	4.2
Total					77.3					41.75

Q2) Calculate the total daily energy consumption of the facility?

Q3) Calculate total energy saved by New Scenario - 1?

Total Energy savings = Σ (Energy consumption in old scenario – Energy consumption from new scenario)

Total Energy savings by New Scenario - 1 = 77.3 - 63.34

Total Energy savings by New Scenario - 1 = 13.96 kWh/day

Q4) Calculate total energy saved by New scenario - 2?

Total Energy savings by New scenario - 2 = 77.3 - 41.75

Total Energy savings by New scenario - 2 = 35.55 kWh/day

Investment cost assessment

Name	Proposed Measure	Investment	Total Investment, EC\$
Fluorescent tube lights	Replacement with LED	30EC\$/20W LED tube light	300
Fluorescent tube lights	Minimise op. hours	Nil	Nil
Split air condition units	Replacement with Inverter AC	3000 EC\$/unit	9000
Split air condition units	Minimise op. hours	Nil	Nil
Water pump	Minimise op. hours	100 EC\$/unit	100
Street lights	Replacement with LED	180EC\$/70W LED light	900

Calculate total investment cost of each measure?

Energy saving calculations

Name	Proposed measure	Energy, kWh/day	Energy from New Scenario -1, kWh. day	Energy from New Scenario -2, kWh. day	operatin g days/yea r	Annual Energy consumpti on from old scenario	Annual Energy consumpti on, kWh (New Scenario-1)	Annual Energy consumpt ion, kWh (New Scenario- 2)
		А	A1	A2	В	C=AxB	D=A1xB	E=A2xB
A) Fluorescent tube lights	Replacemen t with LED	5.4		3.0	365	1971		1095
B) Fluorescent tube lights	Minimise op. hours		4.31		365		1573	
C) Split air condition units	Replacemen t with Inverter AC	59.4		31.05	365	21681		11333
D) Split air condition units	Minimise op. hours		47.52		365		17345	
E) Water pump	Minimise op. hours	3.5	2.8	3.5	365	1278	1022	1278
F) Street lights	Replacemen t with LED	9.0	9.0	4.2	365	3285	3285	1533
Total		77.3	63.64	41.75		28215	23225	15239

Energy saving calculations

Name	Proposed measure	Energy saving with old & New scenario-1, kWh/day	Energy saving with old & New scenario- 2, kWh/day	Energy Cost saving from scenario- 1, EC\$	Energy Cost savings from scenario- 2, EC\$	Investment, EC\$	Simple Payback period, years
		F=C-D	G=C-E	H=F x 0.78	I=G x 0.78	J	K = J/H or I
A) Fluorescent tube lights	Replacement with LED		876		683.3	300	0.44
B) Fluorescent tube lights	Minimise op. hours	398		310.4		Nil	Immediate
C) Split air condition units	Replacement with Inverter AC		10348		8071.4	9000	1.11
D) Split air condition units	Minimise op. hours	4336		3382.1		Nil	Immediate
E) Water pump	Minimise op. hours	256	0	199.7		100	0.50
F) Street lights	Replacement with LED	0	1752		1366.6	900	0.66
Total		4990	12976	3892.2	10121.3	8800	

Ranking of Energy conservation Proposals

Based on the values of Simple Pay back period, we can rank the projects.

- **\Rightarrow Rank 1**: Short term measures -SPB < 1 year
- *** Rank 2**: Medium term measures -SPB > 1 year and < 3 years
- **Rank 3: Long term measures** SPB > 3 years

Energy Audit Reporting – Table of contents

SI.No	Content	Coverage
	Executive Summary	 ✓ Brief description of the facility ✓ Overall Energy use ✓ Summary of energy conservation measures ✓ Overall energy saved and energy cost savings ✓ Major Energy saving areas ✓ Energy conservation measures implementation strategy
1.0	Introduction	✓ Detailed background of the facility
2.0	Methodology	 ✓ Detailed list of areas being covered for the energy audit study in the facility ✓ Details of energy audit tools used for the study ✓ Audit Approach being followed
3.0	Energy Consumption Profile	 ✓ Details of Energy sources being used in the facility (like Electricity, Diesel etc) ✓ Annual Energy consumption ✓ Annual Production (if it is a Processing Industry) ✓ Area and occupancy (If it is a commercial building) ✓ Energy Tariff (Cost of electricity and fuel)
4.0	Measurements – Observations & Analysis	 Electrical System and distribution Background – Source of electricity, Electrical infrastructure Electricity Tariff and bill analysis Load profile of the incomer – Measurements and Analysis Power quality, Electric drives analysis Mechanical Equipment like fans, pumps, Air conditioning units Background – Equipment details and user areas identification Measurements and analysis of performance and end use practices Thermal Equipment – Boilers for hot water and cooking purposes Facility description – Equipment details and user areas identification Measurements and analysis of performance and end use practices

Energy Audit Reporting – Table of contents

SI.No	Content	Coverage
5.0	Energy Conservation measures	 ✓ Identified Energy Conservation measures on Electrical, Mechanical and Thermal areas ◆ Background ◆ Recommendation ◆ Economic Analysis
6.0	Summary of potential energy savings	 ✓ Identified Energy Conservation measures are segregated as per the Simple payback period (SPB) ◆ Short term measures - SPB < 1 year ◆ Medium term measures - SPB > 1 year and < 3 years ◆ Long term measures - SPB > 3 years

Thank You

